Decoding the Fine Flavour Properties of Dark Chocolates

Lisa Ullrich, Bettina Casty, Amandine André, Tilo Hühn, Martin Steinhaus and Irene Chetschik
Cocoa and chocolate key odorants

Aroma development along the processing chain

Harvest → Fermentation → Drying/Transportation → Roasting → Conching → Final Product

© Food Chemistry, ILGI ZHAW
Cocoa and chocolate key odorants

- bell pepper-like
- bergamot-like
- fruity
- banana-like
- dried fruits, flowery
- cinnamon-like
- flowery, rose-like
- honey, beeswax-like
- sweaty, cheesy
- pungent
- seasoning
- phenolic, horse-like
- smoky
- spicy, clove-like
- vanilla-like
- coconut-like
- malty, cocoa-like
- caramel-like
- cooked potato-like
- earthy, roasty
- earthy
- popcorn-like
- cabbage-like
Cocoa and chocolate key odorants

- bell pepper-like
- bergamot-like
- fruity
- banana-like
- dried fruits, flowery
- cinnamon-like
- flowery, rose-like
- honey, beeswax-like
- sweaty, cheesy
- pungent
- seasoning
- phenolic, horse-like
- smoky
- spicy, clove-like
- vanilla-like
- coconut-like
- malty, cocoa-like
- caramel-like
- cooked potato-like
- earthy, roasty
- earthy
- popcorn-like
- cabbage-like
Cocoa and chocolate key odorants

bell pepper-like bergamot-like fruity banana-like dried fruits, flowery
cinnamon-like flowery, rose-like honey, beeswax-like sweaty, cheesy pungent seasoning
phenolic, horse-like smoky spicy, clove-like vanilla-like coconut-like
malty, cocoa-like
caramel-like cooked potato-like earthy, roasty earthy popcorn-like cabbage-like
Cocoa and chocolate key odorants

- Bell pepper-like
- Bergamot-like
- Fruity
- Banana-like
- Dried fruits, flowery
- Cinnamon-like
- Flowery, rose-like
- Honey, beeswax-like
- Sweaty, cheesy
- Pungent
- Seasoning
- Phenolic, horse-like
- Smoky
- Spicy, clove-like
- Vanilla-like
- Coconut-like
- Malty, cocoa-like
- Caramel-like
- Cooked potato-like
- Earthy, roasty
- Earthy
- Popcorn-like
- Cabbage-like

Compounds present in unfermented fresh cocoa beans:
- Compounds mostly formed during fermentation:
- Compounds mostly formed during thermal processing:

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Chocolate Aroma Analysis

Sample work-up

© Food Chemistry, ILGI ZHAW

Chocolate Aroma Analysis

Identification of odor-active compounds with gas chromatography-olfactometry (GC-O)

Chetschik, I. Key Odorants of Cocoa. *Chimia* 2021, 75, 981.

Aroma Extract Dilution Analysis (AEDA)

Source: Steinhaus, PhD-Thesis 2001
Chocolate Aroma Analysis

Quantification by gas chromatography-mass spectrometry using isotopically substituted odorants

Odor activity value (OAV)/
Dose over threshold factor (DoT factor)

\[\text{OAV/DoT factor} = \frac{\text{concentration}}{\text{odor threshold}} \]
Chocolate Taste

Alkaloids - bitter
- theobromin
- stimulating compounds
- no significant changes during fermentation & processing
- ratio theobromine/coffeine for differentiation between Forastero/Criollo varieties

Organic acids - sour
- citric acid
- lactic acid
- acetic acid
- citric acid is already present in unfermented cocoa beans
- lactic acid and acetic acids as fermentation products
- acetic acid can be removed by thermal processing

Polyphenols – bitter/adstringent
- epicatechin
- proanthocyanidine
- bitter, rough adstringent
- antioxidative properties → health beneficial effects

Diketopiperazines (DKPs) - bitter
- 27-34
- 35-50
- formed mostly during roasting
- synergistical effect on bitterness with caffeine

Dose over threshold factor (DoT factor)

\[
\text{DoT factor} = \frac{\text{concentration}}{\text{taste threshold}}
\]

Cocoa key tastants according Stark et al, 2005 (figure ZHAW Research Group Food Chemistry)
Perspectives of Cocoa Flavour Research

In the past:
Flavour research mostly done on intermediates/products produced in big industrial scale (no defined origin/variety)

➢ Key compounds of cocoa/chocolate flavour have been identified
➢ Focus: Effect of technological processing on flavour

Today:
➢ More and more consumers demand flavourful, fairly traded, sustainable and traceable products
➢ The scene of small batch producers is growing
 → awareness for a broad range of different cocoa flavours
Flavour diversity of cocoa and chocolate described on sensory level

➢ products of defined variety/origin show different flavour properties than products produced in an industrial scale

➢ Such products have not been studied comprehensively with the methods of the molecular science

➢ The molecular background of fine flavour properties like fruity, cocoa-like and floral is not fully understood yet

<table>
<thead>
<tr>
<th>Origin</th>
<th>Cocoa type</th>
<th>Duration (days)</th>
<th>Special flavor character</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecuador</td>
<td>Nacional (Arriba)</td>
<td>2 Short</td>
<td>Aromatic, floral, spicy, green</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Criollo (CCN51)</td>
<td>2</td>
<td>Acidic, harsh, low cocoa</td>
</tr>
<tr>
<td>Ceylon</td>
<td>Trinitario</td>
<td>1.5</td>
<td>Floral, fruity, acidic</td>
</tr>
<tr>
<td>Venezuela</td>
<td>Trinitario</td>
<td>2</td>
<td>Low cocoa, acidic</td>
</tr>
<tr>
<td>Venezuela</td>
<td>Criollo</td>
<td>2</td>
<td>fruity, nutty</td>
</tr>
<tr>
<td>Zanzibar</td>
<td>Criollo</td>
<td>6 Medium</td>
<td>Floral, fruity</td>
</tr>
<tr>
<td>Venezuela</td>
<td>Forastero</td>
<td>5</td>
<td>Fruity, raisin, caramel</td>
</tr>
<tr>
<td>Ghana</td>
<td>Forastero</td>
<td>5</td>
<td>Strong basic cocoa, fruity notes</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Forastero/Trinitario</td>
<td>6</td>
<td>Acidic, phenolic</td>
</tr>
<tr>
<td>Trinidad</td>
<td>Trinitario</td>
<td>7–8 Long</td>
<td>Winy, raisin, molasses</td>
</tr>
<tr>
<td>Grenada</td>
<td>Trinitario</td>
<td>8–10</td>
<td>Acidic, fruity, molasses</td>
</tr>
<tr>
<td>Congo</td>
<td>Criollo/Forastero</td>
<td>7–10</td>
<td>Acidic, strong cocoa</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>Trinitario</td>
<td>7–8</td>
<td>Fruity, acidic</td>
</tr>
</tbody>
</table>

Sensory References

sensory reference samples

- samples with distinct flavour attributes
- essential for the global standardisation of sensory assessments of cocoa and chocolate
- from *Cocoa of Excellence*
- chocolates produced out of reference liquors (75% cocoa mass, 25% sugar)

<table>
<thead>
<tr>
<th>sample code</th>
<th>cocoa variety</th>
<th>cocoa bean origin</th>
<th>reference attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref1</td>
<td>Forastero</td>
<td>Ghana</td>
<td>cocoa, roast degree</td>
</tr>
<tr>
<td>Ref2</td>
<td>Criollo</td>
<td>Mexico</td>
<td>fruity (fresh fruit, browned fruit), acidic</td>
</tr>
<tr>
<td>Ref3</td>
<td>Trinitario</td>
<td>Dominican Republic</td>
<td>fruity (fresh fruit, browned fruit), acidic</td>
</tr>
<tr>
<td>Ref4</td>
<td>Trinitario</td>
<td>Madagascar</td>
<td>fruity (fresh fruit), acidic</td>
</tr>
<tr>
<td>Ref5</td>
<td>Nacional</td>
<td>Ecuador</td>
<td>floral, bitter, astringent</td>
</tr>
<tr>
<td>Ref6</td>
<td>Forastero</td>
<td>Ivory Coast</td>
<td>cocoa, roast degree</td>
</tr>
</tbody>
</table>

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Aim of the Investigation

- Decoding the fine flavour properties of chocolates produced of reference liquors deriving from the *Cocoa of Excellence* Program

- Better understanding the fine flavour attributes for the future development of standardised training samples for sensory panels
Results – GC-O Analysis

GC-O analysis (AEDA)

➢ 47 odor-active compounds were identified
➢ all were known cocoa and chocolate odorants
➢ the distinct fine flavour properties have to be caused by quantitative differences of known key odorants
➢ quantitation of 27 odorants and 8 tastants

Results - GC-O Analysis

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Results - PCA

Principal Component Analysis

Dose over threshold factor (DoT factor) = concentration / odor/taste threshold

Results - Decoding the Fine Flavor Properties of Dark Chocolates

- Ethyl 2-methylbutanoate
- 3-methylbutyl acetate
- Ethyl 3-methylbutanoate
- Ethyl phenylacetate
- Acetic acid

<table>
<thead>
<tr>
<th>Ref2</th>
<th>Ref4</th>
<th>Ref3</th>
<th>Ref5</th>
<th>Ref6</th>
<th>Ref1</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ref4</th>
<th>Ref3</th>
<th>Ref5</th>
<th>Ref1</th>
<th>Ref2</th>
<th>Ref6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ref3</th>
<th>Ref2</th>
<th>Ref1</th>
<th>Ref4</th>
<th>Ref6</th>
<th>Ref5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ref3</th>
<th>Ref4</th>
<th>Ref5</th>
<th>Ref2</th>
<th>Ref1</th>
<th>Ref6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>2.0</td>
<td>1.5</td>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ref4</th>
<th>Ref2</th>
<th>Ref3</th>
<th>Ref5</th>
<th>Ref6</th>
<th>Ref1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>8000</td>
<td>6000</td>
<td>4000</td>
<td>2000</td>
<td>0</td>
</tr>
</tbody>
</table>

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Results - Decoding the Fine Flavor Properties of Dark Chocolates

4-hydroxy-2,5-dimethylfuran-3(2H)-one

2-methylbutanal

dimethyltrisulfane

3-methylbutanal

phenylacetaldehyde

fruity, acidic
cocoa-like, roast degree
floral, bitter, astringent

Zurich University of Applied Sciences

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Results - Decoding the Fine Flavor Properties of Dark Chocolates

procyanidin C1

(-)-epicatechin

procyanidin B2

2-phenylethan-1-ol
Results - Decoding the Fine Flavor Properties of Dark Chocolates – Summary

Ref5: floral, astringent, bitter
Ref1, Ref6: cocoa-like, roasty
Ref2, Ref3, Ref4: fruity, acidic

- **2-phenylethan-1-ol** polyphenols
- 2- & 3-methylbutanal
- 4-hydroxy-2,5-dimethylfuran-3(2H)-one
- dimethyltrisulfane
- ethyl 2-methylbutanoate
- ethyl 3-methylbutanoate
- 3-methylbutyl acetate
- acetic acid
Results - Decoding the Fine Flavor Properties of Dark Chocolates – Outlook

Understanding the fine flavour attributes is important for

- the development of standardised training samples for sensory evaluation of cocoa products and the future quality assessment of cocoa and chocolate
- understand the diversity of chocolate flavours and further research of fine flavour cocoa products e.g. single-variety small batch chocolates
- finding objective indicators for fine or flavour cocoa
- the biodiversity of cocoa, fair cocoa farming and sustainability of cocoa
Thank you for listening!

Decoding the Fine Flavor Properties of Dark Chocolates